Error estimates for scalar conservation laws by a kinetic approach

نویسنده

  • A. Omrane
چکیده

We use the kinetic approach of Perthame and Tadmor (1991) to calculate the error estimates for general scalar conservation laws governing problems in gas dynamics or fluid mechanics in general. The Kružkov and Kuznetsov techniques are generalized to this method, and an error bound of order √ ε (where ε is the mean free path) is obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A priori error estimates for numerical methods for scalar conservation laws. Part I: The general approach

In this paper, we construct a general theory of a priori error estimates for scalar conservation laws by suitably modifying the original Kuznetsov approximation theory. As a first application of this general technique, we show that error estimates for conservation laws can be obtained without having to use explicitly any regularity properties of the approximate solution. Thus, we obtain optimal...

متن کامل

A New Perspective on Kinetic Schemes

Compared to standard numerical methods for hyperbolic systems of conservation laws, Kinetic Schemes model propagation of information by particles instead of waves. In this article, the wave and the particle concept are shown to be closely related. Moreover, a general approach to the construction of Kinetic Schemes for hyperbolic conservation laws is given which summarizes several approaches dis...

متن کامل

Pointwise Error Estimates for Scalar Conservation Laws with Piecewise Smooth Solutions∗

We introduce a new approach to obtain sharp pointwise error estimates for viscosity approximation (and, in fact, more general approximations) to scalar conservation laws with piecewise smooth solutions. To this end, we derive a transport inequality for an appropriately weighted error function. The key ingredient in our approach is a one-sided interpolation inequality between classical L1 error ...

متن کامل

An error estimate for the parabolic approximation of multidimensional scalar conservation laws with boundary conditions

We study the parabolic approximation of a multidimensional scalar conservation law with initial and boundary conditions. We prove that the rate of convergence of the viscous approximation to the weak entropy solution is of order η, where η is the size of the artificial viscosity. We use a kinetic formulation and kinetic techniques for initial-boundary value problems developed by the last two au...

متن کامل

Adaptive Solution of One{dimensional Scalar Conservation Laws with Convex Flux

A new adaptive approach for one{dimensional scalar conservation laws with convex ux is proposed. The initial data are approximated on an adaptive grid by a problem dependent, monotone interpolation procedure in such a way, that the multivalued problem of characteristic transport can be easily and explicitly solved. The unique entropy solution is chosen by means of a selection criterion due to H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006